Generative Diffusion Models for Audio Inpainting

Facoltà di Ingegneria dell'informazione, informatica e statistica Engineering in Computer Science

Andrea Rodriguez 1834937

Advisor Prof. Danilo Comminiello

Generative Diffusion Models for Audio Inpainting

Background: Task, Diffusion models and Spectrograms

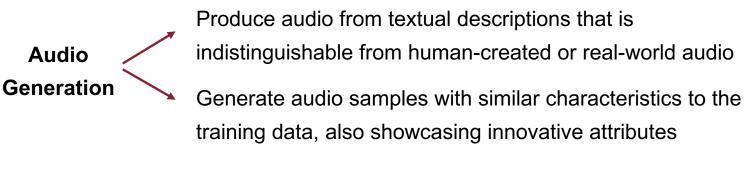
State-of-the-Art: AudioLDM

Selected technique: Tango + RePaint

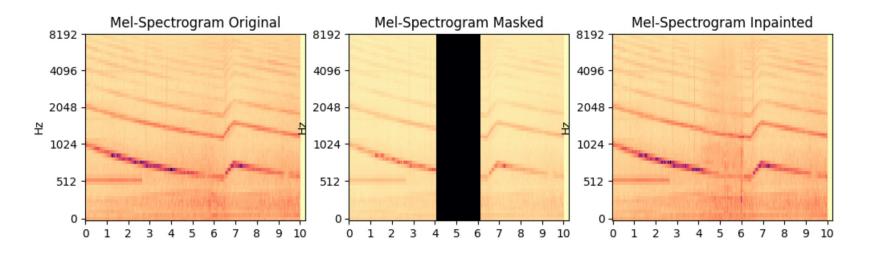
4

Additional use case: Denoising in communication scenarios

Audio generation and Audio inpainting

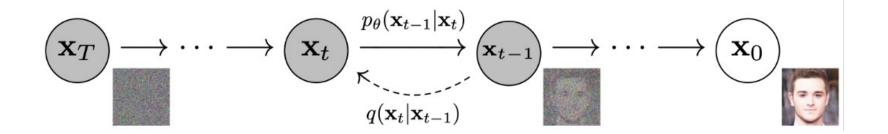


AudioReconstruct missing or corrupted portions of audio signalsInpaintingand restore the original audio content



Diffusion models

Main concepts Generate high-quality samples and perform denoising and inpainting



Forward process: using a variance schedule, small amounts of Gaussian noise are added to the sample in *T* steps

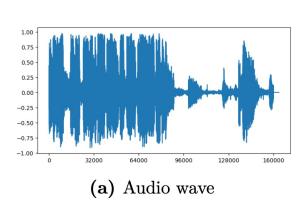
$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$$

Reverse process: the noise added at each step of the forward process is predicted and removed from initial noise

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\mu}(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \mathbf{I})$$

Spectrograms

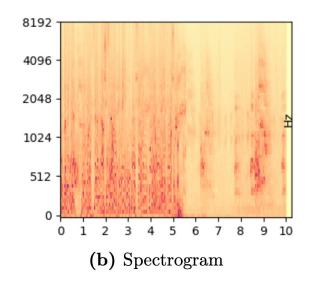
A **spectrogram** is a visual representation that displays the frequency content of an audio signal over time



Vector 1 x 160000 (10 seconds)

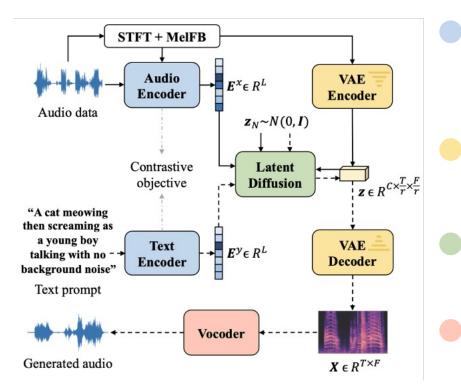
Sparsity → Computationally demanding and Risk of overfitting

Matrix 1024 x 64 (10 seconds)



Dense representation \rightarrow Capture long term dependencies and Efficient training

State-of-the-Art: AudioLDM



Inpainting:

- x^{known} is sampled from the known part
- x^{unknown} is sampled from the model

CLAP (Contrastive Language-Audio Pretraining): encode audio descriptions and audio clips into a shared audio-text embedding space

VAE (Variational Autoencoder): compress the spectrogram into a compact latent space

Latent Diffusion: the conditioning information is integrated into the feature extraction process

Vocoder: synthesizes the audio waveform from the generated spectrogram

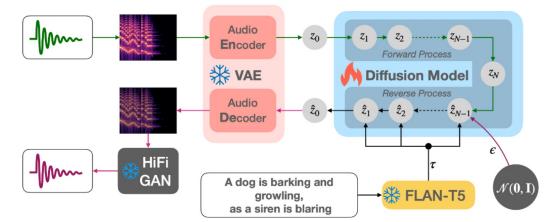
 $x_{t-1} = m \odot x_{t-1}^{known} + (1-m) \odot x_{t-1}^{unknown}$

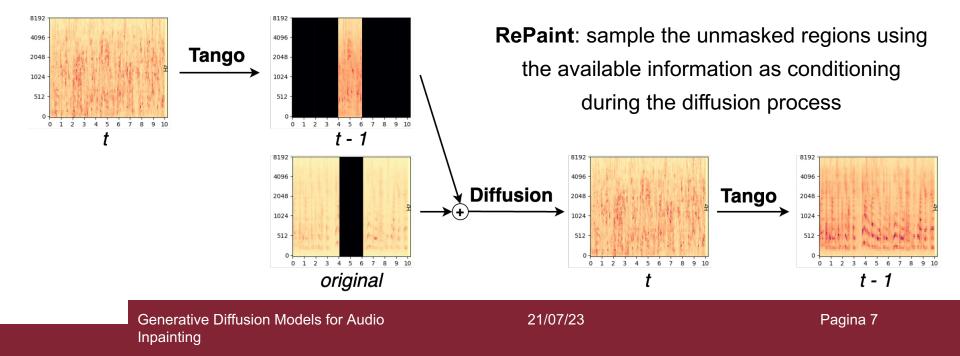
The two components are combined according to the mask *m*

Tango + RePaint

FLAN-T5:

- Instruction-tuned LLM architecture used as text encoder
- Trained on a large-scale chain-ofthought and instruction-based dataset





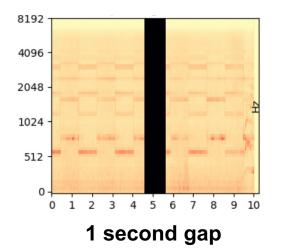
Audio samples and Inference details

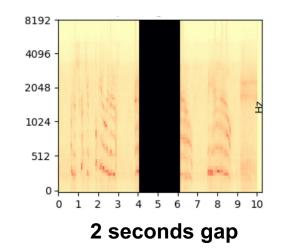
Tests were performed using 24 audio clips from the AudioCaps dataset

"Female and male are having conversation"

"An emergency vehicles" siren with a brief male yell"

"Duck quacking repeatedly"





Listen to the audio clips at: https://www.andrearodriguez.it/inpainting

Results

"Duck quacking repeatedly" 0 1 2 3 4 5 9 10 0 1 2 9 10 9 10 Δ **(**) ()) Original Masked **Inpainted using RePaint (**) **(**) (()) *"A telephone* ringing" 8 9 10 9 10 1 2 0 1 1 2 9 10 Generative Diffusion Models for Audio 21/07/23 Pagina 9

Inpainting

Average metrics (Tango + RePaint)

1 second gap

2 seconds gap

4.5s - 5.5s	AudioLDM	Tango RePaint		4.0s - 6.0s	AudioLDM	Tango RePaint
SDR	-3.27	5.96		SDR	-4.97	1.64
SNR	-0.25	6.17		SNR	-1.45	2.71
PSNR	39.46	44.08		PSNR	35.44	39.92
SSIM	98.40	99.18		SSIM	97.84	98.59

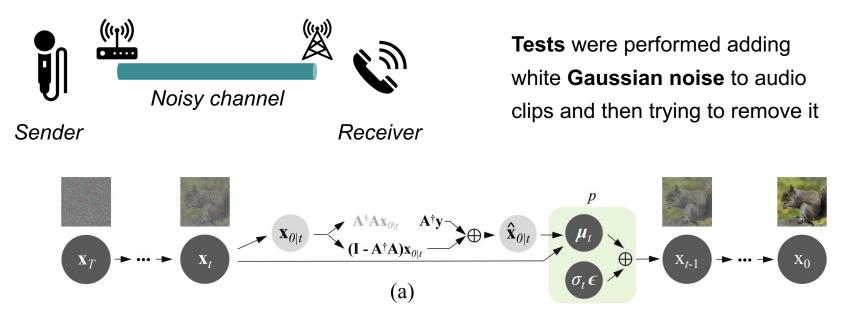
Metrics computed on **audio**:

- SDR Signal Distortion Ratio
- SNR Signal Noise Ratio

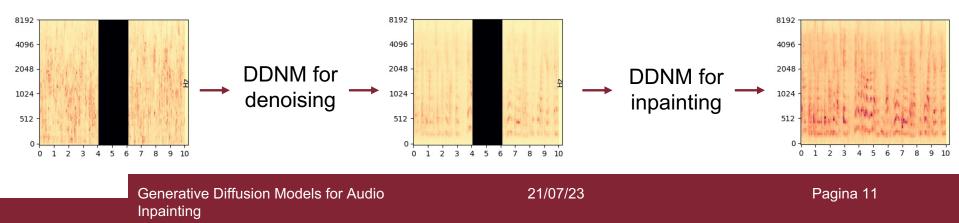
Metrics computed on **spectrograms**:

- PSNR Peak Signal Noise Ratio
- SSIM Structural Similarity Index Measure (%)

Denoising in communication scenarios: DDNM

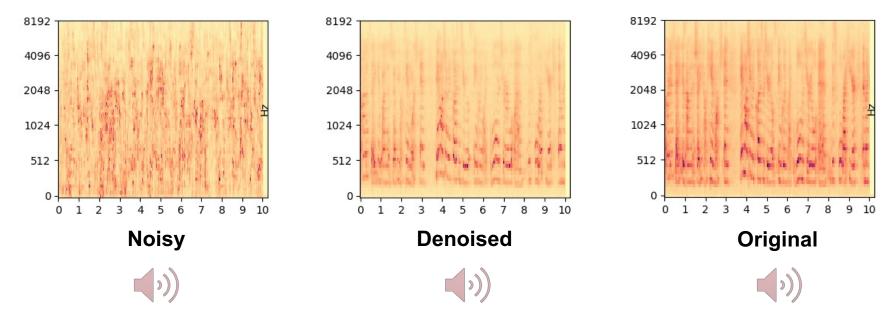


DDNM is a framework for image restoration which refines the null-space content during the reverse diffusion process to perform tasks such as denoising and inpainting



Results

"An adult female is speaking in a quiet environment"



SNR

SNR

PSNR 20	Clip 1	Clip 2	Clip 3	Clip 4	PSNR 30	Clip 1	Clip 2	Clip 3	Clip 4
Noisy	-9.80	-9.11	-8.61	-10.10	Noisy	-3.53	-2.45	-3.54	-3.61
Denoised	-2.47	-3.80	-2.64	-2.58	Denoised	-1.82	-1.14	-1.32	-2.20

Conclusions

- The proposed combination of Tango + RePaint consistently outperforms the baseline results for inpainting with clean audios as input
- The use of **DDNM** enables remarkable denoising capabilities, even in scenarios with substantial levels of noise

and Future works

- Create an automated communication system to perform denoising, identify problematic segments and inpaint them
- **Remove conditioning** from text and perform inpainting based only on the known portion of audio

Paper in progress!

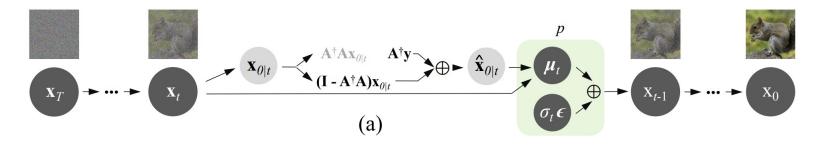
References

- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. 2020. arXiv: 2006.11239 [cs.LG].
- Haohe Liu et al. AudioLDM: Text-to-Audio Generation with Latent Diffusion Models. 2023. arXiv: 2301.12503 [cs.SD].
- Deepanway Ghosal et al. Text-to-Audio Generation using Instruction-Tuned LLM and Latent Diffusion Model. 2023. arXiv: 2304.13731 [eess.AS].
- 4. Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model. 2022. arXiv: 2212.00490 [cs.CV].
- Andreas Lugmayr et al. RePaint: Inpainting using Denoising Diffusion Probabilistic Models. 2022. arXiv: 2201.09865 [cs.CV].
- 6. Chris Dongjoo Kim et al. "AudioCaps: Generating Captions for Audios in The Wild". In: Proceedings of the 2019 Conference of the North American Chapter of he Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics, June 2019, pp. 119–132. doi: 10.18653/v1/N191011. url: https://aclanthology.org/N19-1011.

Backup slides

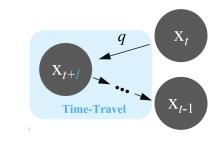
DDNM and **DDNM**⁺

DDNM (Denoising Diffusion Null-Space Model) is a framework for image restoration which refines the null-space content during the reverse diffusion process to produce results that satisfy data consistency and realism



Task: reconstruct \hat{x} from y where y = Ax

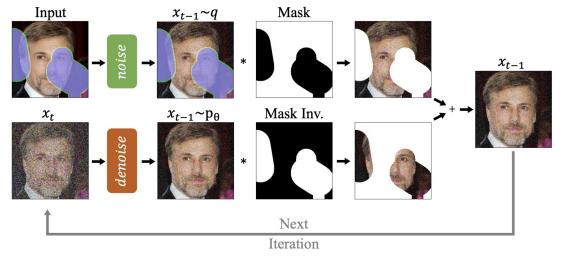
1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2: for t = T, ..., 1 do 3: $\mathbf{x}_{0|t} = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(\mathbf{x}_t - \mathcal{Z}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) \sqrt{1 - \bar{\alpha}_t} \right)$ 4: $\hat{\mathbf{x}}_{0|t} = \mathbf{A}^{\dagger} \mathbf{y} + (\mathbf{I} - \mathbf{A}^{\dagger} \mathbf{A}) \mathbf{x}_{0|t}$ 5: $\mathbf{x}_{t-1} \sim p(\mathbf{x}_{t-1} | \mathbf{x}_t, \hat{\mathbf{x}}_{0|t})$ 6: return \mathbf{x}_0 **DDNM**⁺: Through the time-travel trick we generate a better "past", which in turn leads to a better "future"



21/07/23

RePaint and RePaint⁺

RePaint: sample the unmasked regions using the available information as conditioning during the diffusion process



The model has **more time** to effectively incorporate the provided information with the generated part

RePaint⁺: The latent representation is diffused back to multiple previous steps and then all of them are sequentially performed again

Inference times

	1 Clip	Batch of 8 Clips
AudioLDM	1	4
Tango	10	40
Tango + DDNM	10	40
$Tango + DDNM^+$	120	480
Tango + RePaint	100	400
${\bf Tango + RePaint^+}$	100	400

Inference times in minutes using one GPU NVIDIA Tesla T4

Listen to the audio clips at: https://www.andrearodriguez.it/inpainting

Metrics

- SDR = Signal Distortion Ratio
- SNR = Signal Noise Ratio
- PSNR = Peak Signal Noise Ratio
- SSIM = Structural Similarity Index Measure

4.5-5.5	AudioLDM	Tango	Tango DDNM	Tango DDNM ⁺	Tango RePaint	$\begin{array}{c} {\bf Tango} \\ {\bf RePaint^+} \end{array}$
SDR	-3.27	5.48	5.03	5.47	5.96	4.97
SNR	-0.25	5.73	5.39	5.71	6.17	5.28
PSNR	39.46	43.35	42.44	43.22	44.08	42.38
SSIM	98.40	99.25	99.21	99.28	99.18	99.14

1 second gap

4-6	AudioLDM	Tango	Tango DDNM	Tango DDNM ⁺	Tango RePaint	$\begin{array}{c} {\bf Tango} \\ {\bf RePaint^+} \end{array}$
SDR	-4.97	1.48	1.53	1.99	1.64	1.48
SNR	-1.45	2.82	2.90	2.21	2.71	2.02
PSNR	35.44	39.74	39.85	38.61	39.92	38.56
SSIM	97.84	98.34	98.46	98.45	98.59	98.56

2 seconds gap

* SSIM values are multiplied by 100