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Chapter 1

Introduction

The field of audio restoration and inpainting has witnessed significant advancements
in recent years, driven by the increasing demand for high-quality audio processing.
One promising approach in this domain is the utilization of generative diffusion
models. In this master’s thesis, we focus on the utilization of techniques to extend the
capabilities of generative diffusion models to the audio restoration domain, opening
up new possibilities for audio inpainting and denoising.

Our research builds upon the foundation laid by previous studies on generative
diffusion models and their successful applications in the image domain. However,
we go a step further by adapting these techniques to the unique characteristics and
challenges posed by audio signals. By harnessing the power of generative diffusion
models and integrating it with state-of-the-art image inpainting techniques tailored
for audio, we aim to address the specific intricacies of audio inpainting and offer
robust and effective solutions for reconstructing missing or degraded audio segments.

Additionally we explore the integration of denoising techniques. While genera-
tive diffusion models excel in reconstructing missing audio segments, they also have
the potential to effectively reduce the impact of noise on audio signals. Leveraging
the advancements in denoising algorithms designed for images, we adapt and apply
these techniques to audio data, aiming to improve the overall quality and clarity of
the inpainted audio and providing a comprehensive solution for audio restoration
and inpainting.

The following chapters will be structured in this way:

• Chapter 2: Background. This chapter provides a comprehensive overview of
the fundamental concepts and theories necessary to understand the subsequent
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work. It covers essential topics such as Diffusion Models, Spectrograms, and
the tasks of Audio generation and Audio inpainting.

• Chapter 3: State-of-the-Art generative models. In this chapter, a
thorough survey of state-of-the-art generative models for audio generation will
be presented. Prominent approaches, including AudioLDM [1] and TANGO [2],
will be explored, shedding light on their architectural designs and capabilities
in generating realistic audio content. The chapter aims to provide insights into
the cutting-edge techniques used in the field.

• Chapter 4: Diffusion models for audio inverse problems. This chapter
focuses on selected techniques originally designed for image inpainting, which
have been adapted to the audio domain. Techniques such as DDNM [3]
and RePaint [4] will be discussed in detail, examining their effectiveness and
suitability for audio inpainting applications. The chapter aims to provide
a comprehensive analysis of these methods and their applicability to audio
restoration.

• Chapter 5: Evaluation. This chapter presents the results of extensive
experimentation and evaluation conducted on the proposed audio inpaint-
ing techniques. Relevant metrics and evaluation criteria used to assess the
performance and fidelity of the inpainting methods will be introduced. A com-
parative analysis will be performed to highlight the strengths and limitations
of each approach, providing valuable insights into their effectiveness in various
scenarios.

• Chapter 6: Audio Inpainting in Communication Scenarios. This
chapter explores the potential applications of audio inpainting techniques in
communication systems. The integration of denoising and inpainting capa-
bilities will be discussed, highlighting how it can enhance audio quality in
scenarios where noise and signal degradation occur during transmission. The
chapter also addresses the benefits and challenges associated with utilizing
audio inpainting in communication contexts.

• Chapter 7: Conclusions and Future works. The final chapter summarizes
the key findings and contributions of the thesis. It provides a concise overview
of the research conducted, highlights the implications of the results, and offers
suggestions for future directions in the field of audio inpainting.
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Chapter 2

Background

2.1 Diffusion models

Diffusion models [5] have emerged as a powerful class of generative models that have
gathered significant attention in recent years. These models operate on the principle
of iteratively transforming an initial noise distribution into a target distribution,
offering the ability to generate high-quality samples and perform a range of tasks such
as generation, denoising, and inpainting. Diffusion models provide a unique approach
to modeling complex data distributions by leveraging the sequential refinement of
the noise distribution through a series of diffusion steps. In this paragraph, we delve
into the fundamental concepts of diffusion models.

Figure 2.1. Diffusion models basic idea [5]

2.1.1 Forward diffusion process

The forward diffusion process lies at the core of diffusion models and is at the basis
of their generative capabilities. In this process, the initial noise distribution is pro-
gressively transformed into the target distribution through a sequence of invertible
transformations. The mathematical formulation of the forward diffusion process
involves defining the transformation steps that update the noise distribution at each
iteration. These transformations aim at gradually reducing the discrepancy between
the generated samples and the target distribution by modeling the underlying data
structure.
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Given a data point sampled from a real data distribution x0 ∼ q(x), we define
a forward diffusion process in which we add small amount of Gaussian noise to the
sample in T steps, producing a sequence of noisy samples x1, . . . , xT . The step sizes
are controlled by a variance schedule {βt ∈ (0, 1)}T

t=1.

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI) q(x1:T |x0) =
T∏

t=1
q(xt|xt−1)

The data sample x0 gradually loses its distinguishable features as the step t becomes
larger. A nice property of the above process is that we can sample xt at any arbitrary
time step t in a closed form using the reparameterization trick. Let αt = 1 − βt and
ᾱt =

∏t
i=1 αi:

q(xt|x0) = N (xt;
√

ᾱtx0, (1 − ᾱt)I)

2.1.2 Reverse diffusion process

The reverse diffusion process is a fundamental component of diffusion. In this process,
the goal is to map a sample from the target distribution back to the initial noise
distribution by inverting the forward diffusion steps. This inverse mapping enables
tasks such as reconstruction, denoising and inpainting.

Conceptually, the reverse diffusion process involves iteratively applying the in-
verse transformations to the target sample, gradually recovering the initial noise
distribution. By reversing the transformations, diffusion models aim at reconstruct-
ing the latent variables or clean versions of the observed data. The reverse diffusion
process exploits the fact that the forward and inverse transformations are designed
to be invertible, ensuring that the mapping from the target distribution to the initial
noise distribution is well-defined.

One significant challenge in the reverse diffusion process is solving the inverse
problem. Given a sample from the target distribution, the model needs to infer the
corresponding initial noise distribution that could have generated that sample. If
we can reverse the above process and sample from q(xt−1|xt), we will be able to
recreate the true sample from a Gaussian noise input, xT ∼ N (0, I). Note that if βt

is small enough, q(xt−1|xt) will also be Gaussian. Unfortunately, we cannot easily
estimate q(xt−1|xt) because it needs to use the entire dataset and therefore we need
to learn a model pθ to approximate these conditional probabilities in order to run
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the reverse diffusion process.

pθ(x0:T ) = p(xT )
T∏

t=1
pθ(xt−1|xt) pθ(xt−1|xt) = N (xt−1; µθ(xt, t), Σθ(xt, t))

The reverse conditional probability is tractable when conditioned on x0:

q(xt−1|xt, x0) = N (xt−1; µ̃(xt, x0), β̃tI)

Using the Bayes’ rule and following the standard Gaussian density function, the
mean and variance can be parameterized as follows:

β̃t = 1 − ᾱt−1
1 − ᾱt

· βt

µ̃t(xt, x0) =
√

αt(1 − ᾱt−1)
1 − ᾱt

xt +
√

ᾱt−1βt

1 − ᾱt
x0

We can represent x0 = 1√
ᾱt

(xt −
√

1 − ᾱtϵt) and plug it into the above equation to
obtain:

µ̃t = 1
√

αt

(
xt − 1 − αt√

1 − ᾱt
ϵt

)

2.1.3 UNet

UNet [6] is a popular neural network architecture. It was originally proposed for
biomedical image segmentation tasks but has since been widely adopted for various
tasks. The UNet architecture is renowned for its ability to capture fine-grained
details while maintaining a global context understanding.

The key characteristic of the UNet architecture is its U-shaped design, which consists
of an encoder path and a corresponding decoder path. The encoder path resembles
a traditional convolutional neural network (CNN) and gradually reduces the spatial
dimensions of the input while extracting high-level features. This downsampling
process is achieved through repeated application of convolutional layers with pooling
operations, allowing the network to capture and encode contextual information
effectively.

The decoder path of the UNet architecture performs the reverse operation of the
encoder. It gradually upsamples the features by employing transposed convolutions
or upsampling layers, allowing the network to recover the spatial resolution lost
during the encoding stage. The decoder path also includes skip connections that
concatenate the corresponding feature maps from the encoder path. These skip
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connections serve as shortcuts, providing the decoder with detailed local informa-
tion while maintaining a global context understanding. By integrating the skip
connections, the UNet architecture facilitates the fusion of multi-scale information,
enabling precise localization and segmentation of objects in the image.

The skip connections in the UNet architecture play a vital role in its success.
They allow the network to combine both low-level and high-level features, enabling
the precise localization of objects while capturing contextual information. This
design choice ensures that the network can effectively handle both fine details and
global structures. The skip connections also help address the problem of information
loss during the downsampling and upsampling processes, enabling the network to
reconstruct accurate and detailed output predictions.

The UNet architecture has found successful applications in the context of diffusion
models. By integrating the UNet structure into the design of diffusion models,
researchers have been able to enhance the generative capabilities and inference
tasks of these models. The U-shaped encoder-decoder design of UNet complements
the forward and reverse diffusion processes, enabling diffusion models to capture
fine-grained details while maintaining a global context understanding. The skip
connections in the UNet architecture, which facilitate the fusion of multi-scale infor-
mation, prove to be especially beneficial in diffusion models, as they allow precise
localization and reconstruction during the reverse diffusion process. By leveraging
the UNet architecture within diffusion models, researchers have achieved improved
performances in various tasks. The adaptability and effectiveness of the UNet
architecture make it a valuable asset in advancing the capabilities and applications
of diffusion models.

2.1.4 Training and inference

We need to learn a neural network to approximate the conditioned probability
distributions in the reverse diffusion process. We would like to train µθ to predict
µ̃t = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵt

)
. Because xt is available as input at training time, we can

reparameterize the Gaussian noise term instead to make it predict ϵt from the input
xt at time step t:

µθ(xt, t) = 1
√

αt

(
xt − 1 − αt√

1 − ᾱt
ϵθ(xt, t)

)

xt−1 = N (xt−1; 1
√

αt

(
xt − 1 − αt√

1 − ᾱt
ϵθ(xt, t)

)
, Σθ(xt, t))
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The loss term Lt is parameterized to minimize the difference from µ̃. Empirically,
Ho et al. (2020) [5] found that training the diffusion model works better with a
simplified objective that ignores the weighting term:

Lsimple
t = Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵθ(xt, t)∥2

]
= Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵθ(

√
ᾱtx0 +

√
1 − ᾱtϵt, t)∥2

]
Generating samples from trained diffusion models involves running the forward

diffusion process starting from the initial noise distribution and performing a fixed
number of diffusion steps. Each transformation step updates the noise distribution,
gradually refining it towards the target distribution. This procedure allows for the
generation of diverse and high-quality samples from the learned target distribution.
By controlling the sampling temperature or utilizing conditioning information, the
generated samples can be tailored to exhibit specific characteristics or adhere to
certain constraints.

Figure 2.2. Training and Sampling algorithms [5]

2.2 Spectrograms

Spectrograms offer a powerful and intuitive way to visualize and analyze the frequency
content of audio over time. By converting the audio waveform into a spectrogram, we
can gain insights into the spectral characteristics, temporal dynamics, and structural
components of the audio.

A spectrogram is a visual representation of the frequency content of an audio
signal over time. It is obtained by applying a Fourier transform to short-time
frames of the audio signal and mapping the resulting frequency spectrum onto a
two-dimensional grid. The magnitude or power of each frequency component is
typically represented by a color or intensity value, with time on the horizontal axis
and frequency on the vertical axis.

The construction of spectrograms involves several steps. First, the audio signal is



8 2. Background

divided into short overlapping frames, typically ranging from 10 to 100 milliseconds,
to capture the temporal dynamics. Each frame is then transformed into the frequency
domain using a windowed Fourier transform, such as the Short-Time Fourier Trans-
form (STFT). The resulting frequency spectrum is often converted to a logarithmic
scale to better represent the perceptual characteristics of human hearing. Finally,
the magnitude or power spectrum is mapped to the color or intensity values to
generate the spectrogram.

(a) Audio wave (b) Spectrogram

Figure 2.3. Audio wave and corresponding spectrogram

When working with audio data in deep learning applications, the choice of rep-
resentation can significantly impact the efficiency and effectiveness of the models.
Traditional deep learning models often operate on raw audio waveforms, which
consist of a series of consecutive samples representing the air pressure variations
over time. While waveforms provide a direct representation of the audio signal, they
suffer from inherent sparsity. This means that a vast majority of the waveform
samples are typically close to zero, resulting in a large amount of redundant and
irrelevant information.

The sparsity of audio waveforms poses challenges for deep learning models, as
they have to process and analyze a considerable number of consecutive samples,
which can be computationally demanding and increase the risk of overfitting. Fur-
thermore, capturing long-term dependencies and extracting meaningful features from
sparse waveform data can be challenging.

In contrast, spectrograms offer a more compressed and structured representation of
audio data. By transforming the audio waveform into the frequency-time domain,
spectrograms provide a two-dimensional visual representation of the audio signal.
This representation condenses the temporal information into discrete time frames
and the frequency content into the vertical axis, resulting in a much denser and
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more informative data representation.

The compression achieved by spectrograms enables deep learning models to fo-
cus on relevant spectral features and temporal patterns, rather than processing a
large number of individual waveform samples. Spectrograms capture the frequency
content at different time points and allow the models to extract meaningful patterns
and relationships. This compressed representation facilitates more efficient training
and inference processes, as well as the ability to capture long-term dependencies
more effectively.

2.3 Audio generation

Audio generation, the process of creating new and original audio content, has long
been a fascinating and challenging task in the field of digital signal processing. With
the advent of deep learning audio generation has seen significant advancements,
pushing the boundaries of what is possible in terms of creating realistic, diverse,
and expressive audio signals. Deep learning models have revolutionized the field,
enabling the generation of music, speech, sound effects, and other forms of audio
with remarkable fidelity and creativity.

The goal of audio generation using deep learning is to train models that can au-
tonomously produce audio that is indistinguishable from human-created or real-world
audio. By leveraging the power of neural networks, these models learn from vast
amounts of audio data and discover underlying patterns and relationships. This
enables them to generate new audio samples that possess similar characteristics to
the training data, while also showcasing novel and innovative attributes.

2.3.1 Text-to-Audio

Text-to-audio generation includes not only the synthesis of speech but also the
generation of audio based on textual descriptions. While speech synthesis focuses
on converting written text into spoken words, text-to-audio generation involves
transforming textual descriptions into corresponding audio representations.

Text-to-audio generation has evolved, expanding into the generation of audio that
represents specific sounds, environmental ambiance, musical compositions, or even
abstract audio concepts. By leveraging deep learning techniques, researchers have
developed models that can understand textual descriptions and translate them into
coherent and expressive audio signals. This advancement opens up possibilities for
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applications in sound design, music production, audiovisual media, virtual reality
experiences, and more.

2.4 Audio Inpainting

Audio inpainting involves the reconstruction of missing or corrupted portions of
audio signals, aiming to restore the original audio content. This task has practical
applications in various domains, including audio restoration, speech denoising, music
production, and audio synthesis.

Figure 2.4. Inpainting task

The need for audio inpainting arises due to various reasons. During audio recording
or transmission, audio signals can be subject to various forms of degradation, such
as packet loss, transmission errors, or hardware malfunctions, leading to missing
or corrupted sections in the audio. Additionally, in post-production and editing
scenarios, it is often necessary to remove or replace certain portions of audio due
to noise, artifacts, or undesired content. In such cases, audio inpainting techniques
play a vital role in reconstructing the missing or altered parts, ensuring a seamless
listening experience.

One of the key challenges in audio inpainting is effectively handling longer gaps in the
audio signal, where the missing or corrupted sections span several seconds or more.
Furthermore, ensuring coherence and continuity in the inpainted audio is crucial
for a seamless listening experience. The reconstructed portions should seamlessly
blend with the surrounding audio, matching the tonal characteristics, rhythm, and
spatial attributes. To achieve these characteristics, it is required that the underlying
temporal dependencies and complex audio patterns are captured, which can pose
significant difficulties for traditional signal processing-based approaches.

Numerous approaches have been proposed to tackle the audio inpainting problem.
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Traditional signal processing-based methods often rely on techniques such as lin-
ear prediction, spectral interpolation, and waveform interpolation. These methods
employ statistical models and interpolation techniques to estimate the missing or
corrupted audio segments based on the surrounding context. While these approaches
have shown effectiveness in certain scenarios, they may struggle to capture long-term
dependencies and intricate audio textures, resulting in perceptually suboptimal
reconstructions.

More recently, deep learning-based methods have emerged as a powerful alter-
native for audio inpainting. They allow for the learning of complex audio patterns
and the extraction of meaningful features, which can aid in reconstructing missing or
corrupted audio sections. Deep neural networks can effectively model the contextual
information from the surrounding audio, enabling the generation of plausible and
perceptually coherent inpainted audio.

Understanding the limitations of existing audio inpainting techniques motivates the
exploration of generative diffusion models as a promising alternative approach. By
applying diffusion models to audio inpainting, it is possible to capture the intri-
cate dynamics of audio signals and generate high-quality inpainted audio that is
perceptually faithful to the original content.
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Chapter 3

State-of-the-Art generative
models

In this chapter, we focus on two existing diffusion models for audio generation:
AudioLDM [1] and Tango [2]. These models serve as the baselines for our study and
will be described based on their original proposed architectures in their respective
papers. Both models stem from recent publications, representing state-of-the-art
approaches in audio generation using diffusion models. Our aim is to provide
a detailed description and analysis of these baseline models. By understanding
the architectural choices, training strategies, and performance characteristics of
AudioLDM and Tango, we establish a foundation for evaluating and comparing
advanced techniques for audio inpainting in subsequent chapters.

3.1 AudioLDM

AudioLDM (Audio Latent Diffusion Model) is a novel Text-to-Audio (TTA) system
that leverages a latent space to learn continuous audio representations through
contrastive language-audio pretraining (CLAP) [7] latents. By utilizing pretrained
CLAP models, they are able to train Latent Diffusion Models (LDMs) with audio
embeddings while incorporating text embeddings as conditions during the sampling
process. Furthermore, AudioLDM exhibits exceptional computational efficiency, mak-
ing it a practical and scalable solution. By focusing on the latent space rather than
explicitly modeling the cross-modal relationship, AudioLDM reduces the complexity
of the generation process, resulting in faster inference times and lower resource
requirements. AudioLDM was trained on the AudioCaps dataset [8] using a single
GPU. The results showcase the state-of-the-art performance of AudioLDM in TTA
tasks, as evidenced by both objective metrics and subjective evaluations.
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3.1.1 Architecture

AudioLDM consists of three essential components: contrastive language-audio pre-
training (CLAP), the latent diffusion model (LDM) [9], and the mel-spectrogram/audio
variational autoencoder (VAE). The CLAP stage focuses on encoding the input
audio descriptions into a shared audio-text-aligned embedding space. This facilitates
the alignment of audio and textual information. Using reverse diffusion, the encoded
textual representation is utilized to generate a latent representation of the audio
or audio prior by incorporating standard Gaussian noise. The mel-spectrogram
VAE’s decoder then reconstructs a mel-spectrogram from the obtained latent audio
representation. Finally, the mel-spectrogram is passed through a vocoder, resulting
in the generation of the final audio waveform.

Figure 3.1. AudioLDM Architecture [1]

Conditioned generation: CLAP AudioLDM extends its generative capabilities
through conditioned generation, a technique that allows the model to synthesize
audio samples based on specific conditioning information. One such approach is the
Conditional Latent Audio Prior (CLAP) [7]. CLAP enables AudioLDM to generate
audio samples conditioned on additional input variables, such as text prompts or
other audio samples. By incorporating these condition variables into the generation
process, AudioLDM gains the ability to produce audio samples tailored to specific
contexts or desired attributes.

CLAP aims to capture the rich semantic and acoustic information present in audio
signals and align it with textual context. By pretraining models using CLAP, we
can effectively learn latent representations that facilitate various downstream tasks.
The CLAP framework typically involves training a contrastive objective function
that encourages audio and text embeddings to be close in the shared latent space,
while simultaneously pushing away irrelevant audio and text pairs. This contrastive
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learning setup allows the model to capture the semantic relationships between audio
and text, enabling it to associate the acoustic patterns in the audio signals with
their corresponding linguistic context.

They build the audio encoder on HTSAT [10] and the text encoder on RoBERTa
[11]. Once the CLAP model is trained, we are able to extract the representation of
an audio sample, which encompasses both audio and text information.

Latent space: VAE To compress the mel-spectrogram into a compact latent
space, AudioLDM employs a Variational Autoencoder (VAE) [12] architecture. The
VAE consists of two main components: an encoder and a decoder, both comprising
stacked convolutional modules. Through the training process, AudioLDM utilizes
various loss functions to optimize the VAE’s performance. These include a recon-
struction loss, which ensures the fidelity of the mel-spectrogram reconstruction; an
adversarial loss, which promotes the synthesis of realistic samples; and a Gaussian
constraint loss, which encourages the learned latent space to follow a Gaussian
distribution.

During the sampling process, the decoder component of the VAE is leveraged
to reconstruct the mel-spectrogram from the audio prior generated by the Latent Dif-
fusion Model. The use of VAE-based compression allows us to achieve a small latent
space size, which is crucial for the efficiency and effectiveness of the LDM without
compromising the quality of the generated samples. In the default configuration,
they set the compression level to 4, as it achieves a balance between computational
efficiency and generation quality.

To further enhance the performance of the VAE and guarantee the reconstruc-
tion quality of the generated compositional samples, data augmentation techniques
are applied. This augmentation process helps improving the robustness and general-
ization capability of the VAE by introducing variations in the input data, thereby
enhancing the quality of the reconstructed mel-spectrograms.

The latent space in AudioLDM plays a crucial role in capturing the underlying struc-
ture and semantic information of audio signals. By leveraging the VAE, AudioLDM
can generate audio samples by sampling from the latent space and feeding them
through the decoder network, resulting in diverse and high-quality audio synthesis.

Diffusion The diffusion process, which was introduced and discussed in detail
in the previous chapter, forms a crucial component of the AudioLDM framework.
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In AudioLDM, the diffusion process is employed to model the generation of audio
samples from a latent space. Here, we examine the specific details of how the
diffusion process is applied within the context of AudioLDM.

To begin, AudioLDM leverages the UNet backbone architecture as its basic struc-
ture. The UNet backbone, with its encoder and decoder blocks, plays a pivotal
role in capturing the hierarchical features of the audio data. By conditioning the
UNet on both the time step and the CLAP embedding, AudioLDM incorporates
temporal and semantic information into the generation process. They directly merge
the conditioning information with the feature map of the UNet convolution block
using the feature-wise linear modulation layer. This fusion process ensures that
the conditioning information is integrated into the feature extraction process of the
UNet backbone.

The UNet backbone has four encoder blocks, a middle block, and four decoder
blocks. With a basic channel number of cu, the channel dimensions of encoder blocks
are [cu, 2cu, 3cu, 5cu]. The channel dimensions of decoder blocks are the reverse of
encoder blocks, and the channel of the middle block has 5cu dimensions. They add
an attention block in the last three encoder blocks and the first three decoder blocks.
Specifically, they add two multi-head self-attention layers with a fully-connected
layer in the middle as the attention block. The number of heads is determined
by dividing the embedding dimension of the attention block with a parameter ch.
They propose two version of the model: AudioLDM-S with cu = 128, ch = 32, and
AudioLDM-L with cu = 256, ch = 64, respectively.

The diffusion steps are guided by a noise schedule, which determines the inten-
sity of the added noise at each step. In AudioLDM, a linear noise schedule is
employed, where the noise level increases linearly from the initial step to the final
step. This noise schedule allows for a smooth and controlled transition from the
latent space to the audio sample space. During the forward process of AudioLDM,
they utilize N = 1000 steps and employ a linear noise schedule that ranges from
β1 = 0.0015 to βN = 0.0195.

The diffusion process in AudioLDM is performed over a fixed number of steps.
Each diffusion step involves updating the latent variables based on a noise source
and conditioning information. The conditioning information, derived from the CLAP
embedding and the time step embedding, provides essential context and guidance
during the generation process.
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For classifier-free guidance [13] in AudioLDM, they introduce a guidance scale
of 2.0. This scale influences the balance between the guidance term and the noise
term in the diffusion process, allowing them to control the impact of the guidance
signal on the generated samples.

During the sampling process, they employ the DDIM (Denoising Diffusion Proba-
bilistic Models) sampler, as proposed by Song et al. [14]. This sampler facilitates
efficient and high-quality audio synthesis by performing 200 sampling steps and
reducing inference time.

Vocoder: HiFi-GAN To generate high-quality audio samples from the recon-
structed mel-spectrogram, AudioLDM employs the HiFi-GAN vocoder introduced by
Kong et al. [15]. The HiFi-GAN architecture is specifically designed for high-fidelity
audio synthesis, capable of producing realistic and natural-sounding audio waveforms.
It employs two sets of discriminators, a multi-period discriminator, and a multi-scale
discriminator, to enhance perceptual quality. HiFi-GAN processes input samples
at a sampling rate of 16000Hz and extracts a 64-band mel-spectrogram. It follows
the default settings of HiFi-GAN V1, with a window size, FFT size, and hop size of
1024, 1024, and 160 respectively. The frequency range is set from 0 to 8000 (fmin to
fmax).

The process begins by taking the reconstructed mel-spectrogram as input to the
HiFi-GAN vocoder. The vocoder leverages a sophisticated neural network archi-
tecture that incorporates components such as upsampling layers, residual blocks,
and waveform upsampling modules. By employing the HiFi-GAN vocoder, we can
effectively bridge the gap between the reconstructed mel-spectrogram and the final
audio sample. The vocoder synthesizes the audio waveform, leveraging the learned
knowledge from the training process to generate high-fidelity audio that closely
aligns with the original audio content. By utilizing Hi-Fi GAN, AudioLDM ensures
that the generated audio samples maintain the fine-grained details and natural
characteristics of real-world audio.

3.1.2 Dataset and Training

The datasets utilized to train AudioLDM consist of AudioSet (AS) [16], AudioCaps
(AC) [8], Freesound (FS), and the BBC Sound Effect library (SFX). AudioSet is the
largest dataset, featuring 527 labels and over 5,000 hours of audio data. AC, on
the other hand, is a smaller dataset comprising approximately 49,000 audio clips
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with corresponding text descriptions. Both AudioSet and AudioCaps predominantly
contain in-the-wild audio sourced from YouTube, implying that the audio quality is
not guaranteed. To diversify the dataset and include higher-quality audio data, they
crawled data from FreeSound and BBC SFX, which offer a broad range of categories
such as music, speech, and sound effects.

In terms of the audio sample durations, AudioSet and AudioCaps consist of 10-second
segments, while the FreeSound and BBC SFX datasets contain longer audio samples.
To prevent overuse of the data from lengthy audio segments, which may contain
repetitive sounds, only the initial thirty seconds of audio are used from both the
FreeSound and BBC SFX datasets. Subsequently, they segment these audio samples
into ten-second clips. Consequently, the complete dataset is composed of 3,302,553
ten-second audio samples for training the models. It is important to note that even
though certain datasets, such as AudioCaps and BBC SFX, provide text captions
for the audio, they were not employed during LDM training. All the audio clips
were resampled to a 16kHz sampling rate and mono format, with all samples padded
to a duration of 10 seconds.

For each LDM model, the default compression level employed is r = 4. AudioLDM-
S and AudioLDM-L were trained for 0.6 million steps on a single NVIDIA RTX
3090 GPU, with batch sizes of 5 and 8, respectively. The learning rate was set to
3 × 10−5. Additionally, AudioLDM-L-Full was trained for 1.5 million steps on an
NVIDIA A100 GPU, with a batch size of 8 and a learning rate of 10−5. To optimize
performance specifically on AudioCaps, AudioLDM-L-Full was further fine-tuned on
the AudioCaps dataset for 0.25 million steps before conducting evaluations.

3.1.3 Inpainting

In the context of audio inpainting, the objective is to generate the missing portion
of an audio signal based on the observed part, denoted as xob. They address the
task by incorporating the observed part, xob, into the latent representation, z.

During the reverse diffusion process, which starts from the initial latent repre-
sentation zN ∼ N (0, I), the generated latent representation zn−1 are modified at
each step using the following equation:

z′
n−1 = (1 − m) ⊙ zn−1 + m ⊙ zob

n−1
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Here, z′ is the modified latent representation, m represents an observation mask
in the latent space, and zob

n−1 is obtained by adding noise to zob using the forward
diffusion process.

The values of the observation mask m depend on the observed part of the mel-
spectrogram. Since a convolutional structure is used in the VAE to learn the latent
representation z, the spatial correspondency in the mel-spectrogram is roughly
preserved. Specifically, if a time-frequency bin is observed, the corresponding obser-
vation mask is set in the latent space as 1. This allows to retain the ground-truth
observation, zob, while generating the missing information conditioned on the text
prompt using TTA models.

3.2 Tango

Similar to AudioLDM, TANGO is a Text-to-Audio (TTA) model. Its main novelty
lies in the adoption of an instruction-tuned LLM architecture, specifically FLAN-T5
[17], as the text encoder for text-to-audio (TTA) generation. Previous approaches
either utilized a jointly pre-trained text-audio encoder or employed non-instruction-
tuned models like T5. In contrast, the proposed approach demonstrates superior
performance compared to the state-of-the-art AudioLDM on various evaluation
metrics, while maintaining comparable performance on the remaining metrics on
the AudioCaps test dataset. Notably, the LDM in TANGO is trained on a 63
times smaller dataset and the text encoder remains frozen. This improvement in
performance can be also attributed to the adoption of audio pressure level-based
sound mixing during the training set augmentation, which differs from the random
mixing employed in previous methods.

In this section, we will primarily highlight the key distinctions between the ar-
chitecture of TANGO and that of AudioLDM, as they share many similarities.

3.2.1 Architecture

TANGO comprises three key components: the textual-prompt encoder, the latent
diffusion model (LDM), and the mel-spectrogram/audio variational autoencoder
(VAE). The textual-prompt encoder is responsible for encoding the input description
of the audio. Using reverse diffusion, the encoded textual representation is used to
build a latent representation of the audio or audio prior from standard Gaussian noise.
Next, the decoder of the mel-spectrogram VAE reconstructs a mel-spectrogram from
the latent audio representation. Finally, the mel-spectrogram is fed into a vocoder
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to generate the final audio waveform.

Figure 3.2. Tango Architecture [2]

Conditioned generation: FLAN-T5 The text encoder in TANGO is the
pre-trained LLM FLAN-T5-LARGE [17] (780M) and it is used to produce text
embeddings. The FLAN-T5 models, trained on a large-scale chain-of-thought (CoT)
[18] and instruction-based dataset, possess the ability to learn new tasks effectively
by mimicking gradient descent through attention weights. This property is advanta-
geous compared to older large models like RoBERTa and T5, as it enables to learn
the mapping between textual and acoustic concepts without fine-tuning the text
encoder. The richer pre-training of FLAN-T5 allows the encoder to emphasize key
details with reduced noise and enriched context, leading to improved transformation
of textual concepts into their acoustic counterparts.

In TANGO the text encoder is kept frozen, assuming that the subsequent re-
verse diffusion process will effectively learn the inter-modality mapping for audio
prior construction. Fine-tuning it may potentially degrade its in-context learning
ability due to gradients from the audio modality, which is out of distribution to the
pre-training dataset. This differs from a previous approach (AudioLDM), where the
pre-trained text encoder is fine-tuned as part of the text-audio joint-representation
learning (CLAP) for audio prior reconstruction from text.

Diffusion The latent diffusion model (LDM) [9] in TANGO is derived from Au-
dioLDM, aiming to generate the audio prior z0 while incorporating the guidance
from text encoding. The noise estimation component is parametrized using a UNet
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architecture, enhanced with a cross-attention component to incorporate text guid-
ance. In contrast, AudioLDM utilizes audio guidance during training and text
guidance during inference, leveraging the pre-trained joint text-audio embedding
model (CLAP).

To guide the reconstruction of the audio prior z0 during the reverse diffusion
process, a classifier-free guidance [13] approach based on the input text is used.
During inference, a guidance scale w is employed to regulate the influence of the
text guidance on the noise estimation, in comparison to the unguided estimation,
when an empty text is passed to the model.

Latent space (VAE) and Vocoder (HiFi-GAN) TANGO utilizes the same
audio encoder and decoder as AudioLDM, leveraging the pre-trained audio VAE
checkpoint provided by the authors of AudioLDM. Additionally, to convert the
mel-spectrogram generated by the audio VAE decoder into an audio waveform,
TANGO employs HiFi-GAN [15], just like AudioLDM.

3.2.2 Dataset and Training

The primary experiments for text-to-audio generation are conducted using the Au-
dioCaps dataset [8]. This dataset consists of 45,438 audio clips, each paired with
a corresponding human-written caption for training purposes. The validation set
contains 2,240 instances. The audio clips are ten seconds in duration and were
sourced from YouTube videos. Originally, these clips were part of the larger AudioSet
dataset [16], which was created for the audio classification task.

In TANGO, they generate additional text-audio pairs by superimposing existing
audio pairs and concatenating their captions to enhance the cross-modal concept-
composition capabilities of diffusion networks. Unlike the approach of AudioLDM,
which employs random combinations of audio pairs, they adopt a different strategy
and consider human auditory perception for the fusion process [19]. Specifically,
they take into account the audio pressure level to ensure that samples with high
pressure levels do not overpower those with low pressure levels.

For training the latent diffusion model (LDM), only the paired (text, audio) ex-
amples from the AudioCaps dataset were used. The evaluation of the model was
also performed on the AudioCaps test set. This test set includes five different
human-written captions for each audio clip. To ensure consistent evaluation with the
work of AudioLDM, one caption per clip was randomly selected as the text prompt
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for generating the audio signal using the model.

The FLAN-T5-LARGE text encoder was frozen and only the parameters of the
latent diffusion model were trained. The diffusion model was built upon the Stable
Diffusion UNet architecture, which comprises a total of 866M parameters. In the
UNet model, 8 channels were employed and the cross-attention dimension was set to
1024.

For training, the AdamW optimizer was employed with a learning rate of 3 × 10−5

and linear learning rate scheduler during the training process. The model was
trained for 40 epochs on the AudioCaps dataset. Training TANGO involved using
four A6000 GPUs, and it took approximately 52 hours to complete 40 epochs, with
validation performed at the end of each epoch. During training, the per-GPU batch
size was 3, which includes 2 original instances and 1 augmented instance, and 4
gradient accumulation steps were performed.

3.2.3 Inpainting

In the provided code of TANGO, inpainting functionality was not included. To
incorporate inpainting, we adopted a common method used in diffusion models,
which was also employed in AudioLDM. Specifically, we denote the ground truth as
x, the unknown part as m⊙x, and the known part as (1−m)⊙x. Since each reverse
step from xt to xt−1 relies solely on xt, we have the flexibility to modify the known
regions (1 − m) ⊙ xt while maintaining the correct properties of the corresponding
distribution. Since the forward process follows a Markov Chain with added Gaussian
noise, we can sample the intermediate xt at any point in time using the equation:

q(xt|x0) = N (xt;
√

ᾱtx0, (1 − ᾱt)I)

This allows us to sample the know regions m ⊙ xt at any time step t. As a result,
we obtain the following expression for one reverse step in our approach:

xt−1 = m ⊙ xknown
t−1 + (1 − m) ⊙ xunknown

t−1

Here, xknown
t−1 is sampled using the known part m ⊙ x0, while xunknown

t−1 is sampled
from the model based on the previous iteration xt. These two components are then
combined to form the new sample xt−1 using the mask.
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Chapter 4

Diffusion models for audio
inverse problems

In this chapter, our focus will be on exploring two techniques (and the respective
enhanced versions) that we experimented with for audio inpainting. These techniques
are originally designed for image inpainting and we have adapted them to suit the
audio domain. Both techniques are specifically designed to be applied to generative
diffusion models without any fine-tuning or network modifications.

In this study, we extended the concepts introduced in the DDNM [3] and RePaint
[4] papers, originally designed for image processing, to audio samples. Although
these frameworks were initially developed for images, we explored their applicability
to audio by leveraging the structure of spectrograms. Since the diffusion model
employed in Tango operates on a latent space derived from spectrograms, which
can be represented as tensors with dimensions similar to those of images, we investi-
gated whether the similarities in data representation would allow us to apply the
image-based approach to audio processing.

Each section will provide a detailed explanation of the method and how it has
been implemented to fit our task.

4.1 DDNM

The Denoising Diffusion Null-Space Model (DDNM) [3] is a novel framework that
addresses various linear image restoration problems, such as image super-resolution,
colorization, inpainting, compressed sensing, and deblurring, without requiring
additional training or network modifications. DDNM leverages a pre-trained off-the-
shelf diffusion model as the generative prior. By focusing on refining the null-space
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contents during the reverse diffusion process, DDNM produces diverse and high-
quality results that satisfy both data consistency and realism. To handle noisy
restoration and enhance the quality of challenging tasks, the authors also propose
DDNM+, an enhanced and robust version of the framework.

Figure 4.1. DDNM overview

The Range-Null space decomposition introduces a fresh viewpoint on the correlation
between realness and data consistency. It reveals that data consistency is solely
influenced by the contents of the range-space, which can be calculated analytically.
As a result, the data term can be effectively ensured, shifting the focus to identifying
suitable null-space contents that achieve the desired level of realness.

Consider an inpainting mask, denoted as A, and its pseudoinverse, denoted as
A†, which satisfies AA†A ≡ A. A and A† satisfy the following properties:

- A†A can be interpreted as a projection operator that maps samples x to the
range-space of A because AA†Ax ≡ Ax.

- (I − A†A) can be interpreted as a projection operator that maps samples x to
the null-space of A because A(I − A†A)x ≡ 0.

Considering the audio inpainting task as y = Ax, where x is the ground truth, A is
the mask and y is the audio with a gap, we aim to reconstruct a x̂ from the input y

while satisfying two constraints:

Consistency : Ax̂ ≡ y

Realness : x̂ ∼ q(x)

where q(x) is the distribution of the ground truth audio.

We can construct a solution x̂ for an audio with a gap y that satisfies the con-
sistency constraint as follows: x̂ = A†y + (I − A†A)x̄ where x̄ doesn’t influence the
result. The main objective is to find the appropriate x̄ that fulfills the realness
property.
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Once we have computed the estimated x0 at time-step t (denoted as x0|t) using the
standard diffusion model formula, we fix the range-space as A†y, while leaving the
null-space unchanged. This results in the following expression:

x̂0|t = A†y + (I − A†A)x0|t

Now we use x̂0|t as an estimation for x0 allowing only the null-space to be involved
in the diffusion process. To compute xt−1 we sample from p(xt−1|xt, x̂0|t):

xt−1 =
√

ᾱt−1βt

1 − ᾱt
x̂0|t +

√
αt(1 − ᾱt−1)

1 − ᾱt
xt + σtϵ

The final result will satisfy the consistency criterion.

Figure 4.2. DDNM algorithm

4.2 DDNM+

In the original paper, the authors introduce an enhanced version of the algorithm
called DDNM+. This enhanced version incorporates two major extensions to the
original DDNM algorithm. The first extension is designed to handle noisy situations,
but in our case it is not particularly relevant since any noise in the latent space
representation of the spectrogram does not necessarily correspond to noise in the
audio. Therefore, we did not focus on this extension in our experiments. The
second extension, known as time-travel trick, is introduced to improve the realness
of the inpainted audio and yield better overall results. We tested this extension and
observed its impact on the quality of the generated audio.

When dealing with inpainting tasks involving large masks, the range-space con-
tents A†y is too local to guide the reverse diffusion process toward yielding a global
harmony result. To address this limitation, the authors propose a technique known
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as time-travel trick to generate a better “past”, which in turn leads to a better
“future”. Specifically, after computing xt, they “time travel” it back to xt+l and use
the future estimation x̂0|t, which should be more accurate than x̂0|t+l, to generate the
next state xt+l−1. This approach is inspired by RePaint [4], which will be discussed
in more detail later in this chapter.

Figure 4.3. Time-travel trick

To incorporate the time-travel trick in the algorithm, for any time-step t we sample
xt+l from q(xt+l|xt). Then we travel back to time-step t + l and continue the normal
sampling process of DDNM until we obtain xt−1. The parameter l represents the
travel length and directly affects the inference time in a linear manner. Setting l=0
corresponds to the classic DDNM algorithm without time travel.

4.3 RePaint

RePaint [4] is an image inpainting approach based on the Denoising Diffusion Proba-
bilistic Model. It utilizes a pre-trained unconditional DDPM as the generative prior.
Instead of modifying the original DDPM network, they condition the generation
process by sampling the unmasked regions using the available image information
during the reverse diffusion iterations. This technique allows the model to generate
high-quality and diverse output images for various inpainting scenarios without
modifying or conditioning the original DDPM network.

Inpainting approaches necessitate robust generative capabilities to ensure that
the inpainted regions blend seamlessly with the surrounding data and maintain
semantic coherence. To address the issue of semantically incorrect inpainting results
with the standard DDPM sampling strategy, the authors propose an enhanced
denoising strategy called RePaint. Their method involves moving both forward
and backward in diffusion time. This unique approach allows for the generation
of highly meaningful samples by effectively harmonizing the generated information
with the available one throughout the entire inference process. As a result, the
approach achieves more effective conditioning on the provided information, leading
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to improved inpainting outcomes.

Figure 4.4. RePaint overview

Denote the ground truth as x, the unknown part as m ⊙ x and the known part as
(1 − m) ⊙ x. In the reverse diffusion process, each step from xt to xt−1 depends
only on xt. This means that we can modify the known regions (1 − m) ⊙ xt while
maintaining the correct properties of the corresponding distribution. Since the
forward process is defined by a Markov Chain of added Gaussian noise, we can
sample the intermediate xt at any point in time. This allows us to sample the known
regions m ⊙ xt at any time step t. Therefore, we achieve the following expression for
one reverse step in this approach:

xknown
t−1 ∼ N (

√
ᾱtx0, (1 − ᾱt)I)

xunknown
t−1 ∼ N (µθ(xt, t), Σθ(xt, t))

xt−1 = m ⊙ xknown
t−1 + (1 − m) ⊙ xunknown

t−1

Thus, xknown
t−1 is sampled using the known part of the given audio m ⊙ x0, while

xunknown
t−1 is sampled from the model, given the previous iteration xt. These are then

combined to the new sample xt−1 using the mask.

Using the method just described, only the content type of the inpainted region
matches the known regions. However, the inpainted region may not align semanti-
cally with the surrounding audio. In other words, although the DDPM takes into
account the context of the known region, it does not effectively harmonize it with
the remaining audio.

The model predicts xt−1 using xt, which includes the output of the DDPM and
the sample from the known region. However, the sampling of the known region
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is performed independently of the generated parts of the audio, leading to dishar-
mony. Although the model attempts to harmonize the audio in each step, it cannot
fully converge because the same issue persists in the next step. Additionally, the
maximum change to a sample decreases with each reverse step due to the variance
schedule of βt, limiting the model’s ability to correct mistakes and address disharmo-
nious boundaries in subsequent steps. Consequently, the model requires more time
to effectively harmonize the conditional information xknown

t−1 with the generated in-
formation xunknown

t−1 within a single step before progressing to the next denoising step.

In the resampling approach, DDPM’s ability to generate consistent structures within
a data distribution is utilized to harmonize the input. To achieve this, the output
xt−1 is diffused back to xt by sampling xt ∼ N (xt;

√
1 − βtxt−1, βtI). Despite scaling

down the output and introducing noise, certain information from the generated
region xunknown

t−1 is still retained in xunknown
t . This results in a new xunknown

t that is
both more harmonized with xknown

t and incorporates conditional information from it.

To address the limitation of harmonizing only one step at a time, the authors
introduce a parameter called “jump length” to extend the operation’s time horizon
(in the previous case it was set to 1). Increasing the jump length, more steps can be
harmonized, allowing for the incorporation of semantic information throughout the
entire denoising process. However, it’s important to note that increasing the jump
length also increases the runtime of the reverse diffusion. Empirical demonstrations
showed that the benefits of resampling saturate at around 10 resampling steps.

Figure 4.5. RePaint algorithm



4.4 RePaint+ 29

4.4 RePaint+

In addition to the resampling technique described before, we also incorporate jumps
in diffusion time. In the figure we provide a pseudo-code representation to illustrate
the generation of state transitions. It is important to note that each transition
either increases or decreases the diffusion time t by one. For instance, when a jump
length of j = 10 is chosen, we apply ten forward transitions followed by ten reverse
transitions.

Figure 4.6. Pseudo code to generate a diffusion time schedule for RePaint+
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Chapter 5

Evaluation

In this chapter, we will provide a detailed explanation of our evaluation process
for audio inpainting. We will discuss the selection criteria for the audio clips
used in the evaluation and provide insights into the inference details, including
the parameters employed and the inference times for each method. Additionally,
we will explain the metrics chosen to assess the performance of the inpainting
techniques. Finally, we will present the results of our evaluation. To facilitate
access to the original audios, inpainted results, spectrograms, and metrics, we
have made them available for listening and analysis at the following URL: http:

//www.andrearodriguez.it/inpainting/.

5.1 Audio samples

During the evaluation phase, we utilized 24 audio samples sourced from the test set
of the AudioCaps dataset [8]. The AudioCaps dataset consists of links to YouTube
videos, along with specified start times for 10-second audio clips. Each clip is accom-
panied by five captions, although we selected only one caption for our purposes. The
chosen audio samples were representative of three distinct audio types: speech clips,
audios exhibiting clear patterns in the spectrogram, and a mixture of different sounds.

The speech clips are associated with the following captions:

- A man speaks as birds chirp and dogs bark

- Female and male are having conversation

- Male speech with people speaking in the background

- A man is speaking with rumbling in the background

- An adult female is speaking in a quiet environment

http://www.andrearodriguez.it/inpainting/
http://www.andrearodriguez.it/inpainting/
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- A man speaking as a crowd of people laugh and applaud

- Speech and then a pop and laughter

- A baby is crying, and a woman speaks

The audios exhibiting clear patterns in the spectrogram are associated with the
following captions:

- An emergency siren wailing as a large truck engine accelerates growing louder

- A crowd murmurs as a siren blares and then stops at a distance

- An emergency vehicle has the siren on

- An emergency vehicles’ siren with a brief male yell

- A man talking then whistling as guitar music plays

- A person whistles a tune with wind noise and people talking in the background

- A whistling noise with wind blowing in the background

- A telephone ringing

The last batch is composed by a mixture of different sounds associated with the
following captions:

- Thunder and a gentle rain

- Duck quacking repeatedly

- An engine running and helicopter propellers spinning

- A whooshing noise followed by an explosion

- A person talking which later imitates a couple of meow sounds

- A woman talking followed by a young girl talking while an infant cries

- Instrumental music playing followed by heavy fabric being rustled then a man
whistling

- A steady ringing with the tick took of a clock

The audio clips were obtained from YouTube and segmented based on the specified
start and end times mentioned in the provided dataset’s CSV file.
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5.2 Inference details

In our evaluation, we examined two baseline methods described in Chapter 3 and
four proposed methods outlined in Chapter 4. We conducted the evaluation by
introducing gaps of 1 second and 2 seconds in the selected audio clips. These gaps
were positioned in the middle of the clips, specifically from 4.5 seconds to 5.5 seconds
and from 4 seconds to 6 seconds, respectively. Once the gapped audio was generated
from the original version, it was provided as input to the models to generate the
inpainted audio together with the corresponding caption.

We applied the four proposed inpainting methods (DDNM, DDNM+, RePaint,
RePaint+) on the generative diffusion model Tango, specifically on the pretrained
model checkpoint Tango-Full-FT-Audiocaps. Tango was chosen over AudioLDM due
to its superior performance during generation and the potential to achieve better
results in the inpainting task. For each of the four methods, the inference process
was conducted using DDPM [5] with 1000 steps.

During the inference process we utilized the following parameters:

- For the AudioLDM method, we employed the pretrained model checkpoint
audioldm-s-full-v2. As for the inference process, we utilized DDIM [14] with
200 steps;

- For the Tango method, we employed the pretrained model checkpoint Tango-
Full-FT-Audiocaps. As for the inference process, we utilized DDPM [5] with
1000 steps;

- DDNM did not require any specific parameters to be set;

- For DDNM+, we utilized an estimated noise level (σy) set to 0 and a travel
length of 10;

- For the RePaint method, we employed 10 resampling steps;

- For the RePaint+ method, we employed a jump length set to 10 and performed
10 resampling steps.

We conducted the model testing using Google Colab with one NVIDIA Tesla T4
GPU and Kaggle with one NVIDIA Tesla P100 GPU. The audio clips were divided
into three batches, with each batch containing eight samples. The inference times
for the specified parameters, with 10-second clips sampled at 16000Hz, are detailed
in Table 5.1.
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Table 5.1. Inference times in minutes using one NVIDIA Tesla T4.

1 Clip Batch of 8 Clips

AudioLDM 1 4
Tango 10 40
Tango + DDNM 10 40
Tango + DDNM+ 120 480
Tango + RePaint 100 400
Tango + RePaint+ 100 400

It is important to consider that when comparing the metrics computed on the results,
certain methods may require significantly more time (10x or 100x) to generate the
inpainted audio clips compared to others. While a method may achieve better results,
the trade-off with longer inference times may not be favorable in certain scenarios
in which low latency is crucial. The choice of the method depends on the specific
context in which audio inpainting is required, and a balance must be struck between
the desired quality of the inpainted audio and the associated inference time.

5.3 Chosen metrics

To assess the results obtained from the two baselines and the four proposed methods,
we employed four distinct metrics to evaluate the quality of the inpainted audio
signal in comparison to the original signal. Drawing from the evaluation practices
conducted in relevant literature for similar tasks, we opted to compute two metrics
directly on the audio signals and two metrics on the spectrograms generated from
these audio signals. This approach allowed us to comprehensively evaluate various
aspects of the inpainted audio quality and draw meaningful comparisons between
the different methods.

Before computing each metric, we ensured that the inpainted signal, both in terms
of audio and spectrogram, was scaled to the same range as the original signal. This
step was taken to facilitate a fair and unbiased comparison between the two, allowing
for meaningful evaluations of the inpainted audio quality across the different metrics.

SDR on audio The Signal-to-Distortion Ratio [20] [21] quantifies the ratio between
the desired audio signal (signal) and the distortion introduced during the inpainting
process (distortion). The SDR is computed by comparing the original audio signal
with the inpainted audio signal and analyzing the differences between them. The
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distortion refers to any deviation or error introduced during the inpainting process,
which may include artifacts, noise, or inaccuracies in the reconstructed audio. A
higher SDR value indicates a better preservation of the desired audio signal and a
lower amount of distortion in the inpainted audio. It suggests that the inpainting
technique successfully maintains the original content and minimizes any unwanted
changes or errors.

SNR on audio The Signal-to-Noise Ratio [22] is a metric used to evaluate the
quality of the inpainted audio signal by comparing the desired signal (signal) to
the background noise introduced during the inpainting process (noise). The SNR is
calculated by considering the ratio between the power of the desired audio signal and
the power of the background noise. The desired signal represents the original audio
content that should be preserved during the inpainting, while the noise refers to any
additional unwanted sound or artifacts introduced during the inpainting process. A
higher SNR value indicates a better preservation of the desired audio signal relative
to the background noise. It suggests that the inpainting technique effectively reduces
the amount of noise or unwanted artifacts in the inpainted audio, resulting in a
cleaner and more accurate reconstruction.

PSNR on spectrograms The Peak Signal-to-Noise Ratio can be computed
to evaluate the quality of the inpainted spectrogram compared to the original
spectrogram. It provides a measure of the similarity between the two spectrograms
by quantifying the ratio between the maximum possible power of the signal and the
power of the distortion introduced during the inpainting process. A higher PSNR
value indicates a higher similarity or preservation of the original spectrogram in the
inpainted spectrogram. It suggests that the inpainting technique has successfully
reconstructed the spectrogram with minimal distortion or error.

SSIM on spectrograms The Structural Similarity Index Measure is used to
evaluate the similarity between two signals. In the context of audio inpainting,
SSIM can be computed on spectrograms to assess the structural similarity between
the original spectrogram and the inpainted spectrogram. SSIM takes into account
three main components: luminance, contrast, and structure. When applied to
spectrograms, SSIM evaluates the similarity of the frequency and time structures
present in the original and inpainted audio signals. The resulting SSIM value ranges
between 0 and 1, where 1 indicates perfect structural similarity and 0 indicates
no structural similarity. Higher SSIM values indicate a higher degree of similarity
between the original and inpainted spectrograms, suggesting that the inpainting
technique successfully preserves the structural information of the audio signal.
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5.4 Results

In this section, we present the results obtained using the different approaches and
the previously mentioned metrics computed on the inpainted audio clips. In order
to compare the results of each method, we will examine three selected clips. For the
purpose of this comparison, we will display the spectrograms of the clips, while the
corresponding audio can be accessed and listened to via the link provided before.

5.4.1 Clip 1

Let’s begin by examining the first clip, which is described as “A person talking which
later imitates a couple of meow sounds”. In this clip, a 2-second segment from 4s to
6s was masked. Figure 5.1 showcases the outcomes of the inpainting process for this
particular clip.

(a) Original and Masked

(b) AudioLDM (c) Tango (d) DDNM

(e) DDNM+ (f) RePaint (g) RePaint+

Figure 5.1. Results for audio clip with caption: “A person talking which later imitates a
couple of meow sounds”. Gap of 2 seconds from 4s to 6s.
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Upon examining the spectrograms, it is evident that the two baselines and the
four proposed methods exhibit significant differences in their performance. It is
important to note that the usage of Gaussian noise during the inference process can
also contribute to variations in the outcomes. A preliminary analysis reveals that
RePaint appears to be the most effective method for this specific audio clip, as it
successfully preserves both the signals before and after the gap, including the period
of silence in between.

However, when considering the metrics presented in table 5.2, a different pat-
tern emerges. The metrics computed directly on the audio signal favor the DDNM
method, while those computed on the spectrograms favor RePaint (PSNR) and
AudioLDM (SSIM), although SSIM values are nearly identical for RePaint and
AudioLDM. This observation highlights that spectrograms may not always capture
the full complexity of the audio, leading to differing results when compared to metrics
computed on the actual audio waveform.

Table 5.2. Metrics for audio clip with caption: “A person talking which later imitates a
couple of meow sounds”. Gap of 2 seconds from 4s to 6s.

AudioLDM Tango Tango
DDNM

Tango
DDNM+

Tango
RePaint

Tango
RePaint+

SDR -2.10 0.81 3.32 0.48 1.49 0.92
SNR 1.31 2.52 4.52 1.51 2.60 1.82

PSNR 34.43 40.71 41.76 40.95 42.30 40.69
SSIM 98.86 98.52 98.49 98.43 98.84 98.35

5.4.2 Clip 2

Now let’s shift our focus to the second audio clip, which is described as “An emergency
vehicles’ siren with a brief male yell”. In this clip, a 1-second segment from 4.5s to
5.5s was masked. Figure 5.2 showcases the outcomes of the inpainting process for
this particular clip.

In this instance, we observe that the three simpler approaches (AudioLDM, Tango,
and DDNM) were unable to accurately reconstruct the original audio waveform. It
appears that these methods attempted to inpaint the waveform of a siren without
considering how it would blend with the surrounding portions of the original au-
dio. Conversely, DDNM+ and RePaint exhibited more favorable outcomes. These
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(a) Original and Masked

(b) AudioLDM (c) Tango (d) DDNM

(e) DDNM+ (f) RePaint (g) RePaint+

Figure 5.2. Results for audio clip with caption: “An emergency vehicles’ siren with a brief
male yell”. Gap of 1 second from 4.5s to 5.5s.

methods achieved better results by successfully reconstructing the desired waveform,
while ensuring a smoother transition between the inpainted segment and the sur-
rounding audio. It is worth noting that RePaint+ introduced some unintended noise
artifacts into the reconstructed waveform, which could potentially affect the overall
listening experience.

The metrics provided in table 5.3 validate the previous observations. DDNM+

exhibits higher values for SDR and SNR metrics, indicating superior performance
in terms of signal distortion and noise reduction. On the other hand, RePaint
achieves higher values for PSNR and SSIM metrics, indicating better preservation
of signal quality and structural similarity. It is noteworthy that both DDNM+ and
RePaint demonstrate comparable metric values, while the other approaches display
significantly lower metrics.
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Table 5.3. Metrics for audio clip with caption: “An emergency vehicles’ siren with a brief
male yell”. Gap of 1 second from 4.5s to 5.5s.

AudioLDM Tango Tango
DDNM

Tango
DDNM+

Tango
RePaint

Tango
RePaint+

SDR -3.74 6.55 6.77 9.36 8.47 6.27
SNR -1.00 7.16 7.35 9.64 8.82 6.99

PSNR 36.43 47.52 48.69 53.82 54.33 48.37
SSIM 98.86 99.05 99.12 99.71 99.72 99.48

5.4.3 Clip 3

Finally, let’s redirect our attention to the third audio clip, which is described as
“A whistling noise with wind blowing in the background”. In this clip, a 1-second
segment from 4.5s to 5.5s was masked. Unlike the previous two audio clips, we
want to draw attention to a notable behavior observed during the experiments.
Specifically, consider the inpainted audio generated using the DDNM method, as
depicted in Figure 5.3. While it may not precisely match the original waveform upon
comparison, it reconstructs a plausible waveform for the masked section. In certain
use cases, this behavior could be deemed satisfactory and considered a successful
inpainted clip.

Figure 5.3. Results for audio clip with caption: “A whistling noise with wind blowing in
the background”. Gap of 1 second from 4.5s to 5.5s. Method used: DDNM

5.4.4 Average over all 24 clips

After computing the metrics for each audio clip, we calculated the average value
of each metric for each model. These values provide a summary of the overall
performance of each model. The averaged metrics are reported in table 5.4. It is
important to note that when reporting SSIM values in this work, they were multiplied
by 100 to provide more accurate and easily interpretable values.
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Table 5.4. Metrics averages. Higher values indicate better performance.

4.5-5.5 AudioLDM Tango Tango
DDNM

Tango
DDNM+

Tango
RePaint

Tango
RePaint+

SDR -3.27 5.48 5.03 5.47 5.96 4.97
SNR -0.25 5.73 5.39 5.71 6.17 5.28

PSNR 39.46 43.35 42.44 43.22 44.08 42.38
SSIM 98.40 99.25 99.21 99.28 99.18 99.14

4-6 AudioLDM Tango Tango
DDNM

Tango
DDNM+

Tango
RePaint

Tango
RePaint+

SDR -4.97 1.48 1.53 1.99 1.64 1.48
SNR -1.45 2.82 2.90 2.21 2.71 2.02

PSNR 35.44 39.74 39.85 38.61 39.92 38.56
SSIM 97.84 98.34 98.46 98.45 98.59 98.56

These results provide valuable insights into the performance of the various methods.
It is evident that the two baselines fall short in comparison to the other approaches
across all metrics, regardless of the gap duration. RePaint consistently achieves
superior results compared to the other methodologies. However, it is crucial to
consider the trade-off with inference time. RePaint requires approximately 10
times longer than Tango and DDNM, and a 100-fold increase over AudioLDM.
Therefore, when selecting an appropriate method, both the performance metrics and
the associated inference time should be taken into account.
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Chapter 6

A more complex use case: Audio
inpainting in communication
scenarios

The methods explored so far have demonstrated their effectiveness in audio in-
painting. However, we also considered an additional scenario: audio transmission
through a communication channel where noise can corrupt the signal, resulting in
a degraded audio for the receiver. Modern techniques address this issue by trans-
mitting additional data to accurately reconstruct the missing or noisy parts of the
audio. However, in certain cases, it may not be necessary to have a complete and
exact replica of the original transmitted audio. Preserving the semantic information
could suffice, even if some of the received message bits are corrupted due to adverse
channel conditions.

In our approach, we aim at predicting the pre-noise audio by leveraging the genera-
tive diffusion models mentioned earlier and employing an adapted version of DDNM
[3]. This modified approach incorporates denoising capabilities and can be valuable
also when opting to transmit less data and reconstruct the missing segments at the
destination.

6.1 Scenario

In the context of communication systems, every method must confront the physical
obstacles presented by real-world environments. In our scenario, we consider a
situation where the signal z traverses a noisy channel. We model the noise as additive
white Gaussian noise, where the noise component ϵ follows a Gaussian distribution
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given by ϵ ∼ N (0, σ2I), with σ2 representing the noise variance. Consequently, the
received signal can be expressed as z̃ = z + ϵ. To measure the noise level added to
the signal, we employ the Peak Signal-to-Noise Ratio (PSNR), which is defined as:

PSNR = 10 log P

σ2 (dB)

During the testing phase of our method, we explored two different scenarios by
varying the Peak Signal-to-Noise Ratio (PSNR) values. We considered a PSNR of 30,
where the noise only had a slight impact on the signal, and a PSNR of 20, where the
noise significantly affected the signal quality. These choices allowed us to evaluate
the performance of the method under varying levels of noise interference. We also
attempted to reconstruct audio with added noise with PSNR of 10. However, in
this case, the noise completely overwhelmed the signal and the denoising phase was
unable to successfully reconstruct the original data.

We investigated a scenario where the latent representation of the audio is transmitted
through the noisy channel. Consequently, the noise becomes incorporated into the
latent representation and needs to be removed from it. To introduce noise, we
followed a three-step process. First, we normalized the input data. Then, we added
the generated noise based on the desired PSNR. Finally, we restored the data to its
original range. The code snippet used to add the noise is provided in listing 6.1.

Listing 6.1. Code to add noise to the signal

min = torch .min( o r i g i n a l _ l a t e n t s )
max = torch .max( o r i g i n a l _ l a t e n t s )

o r i g i n a l _ l a t e n t s = ( o r i g i n a l _ l a t e n t s − min) / (max − min)

# SNR_DICT i s a d i c t i o n a r y con ta in ing the va l u e s to m u l t i p l y
# the generated no i se to reach the de s i r ed PSNR.
no i s e = torch . randn ( o r i g i n a l _ l a t e n t s . shape ) ∗ SNR_DICT[ snr ]

no i sy_la t ent s = o r i g i n a l _ l a t e n t s + no i s e
no i sy_la t ent s = ( no i sy_la t ent s ∗ (max − min) ) + min
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6.2 Method

Let’s now explore the methodology behind our approach. The core remains largely
consistent with the description provided in section 4.1, with a few notable modi-
fications as suggested in the original paper [3]. Specifically, they introduce a new
hyperparameter called σy, which is set prior to utilizing the model for denoising
purposes. The purpose of this parameter is to represent the estimated noise level
that we aim to eliminate from the audio signal.

Let us define the following variables:

at =
√

ᾱt−1βt

1 − ᾱt

Σt = λtI where λt =

1, σt ≥ atσy

σt/atσy, σt < atσy

Φt = γtI where γt = σ2
t − (atλtσy)2

The key differences from the classic DDNM algorithm appear when computing x̂0|t

and xt−1 which become:

x̂0|t = ΣtA
†y + (I − ΣtA

†A)x0|t

xt−1 =
√

ᾱt−1βt

1 − ᾱt
x̂0|t +

√
αt(1 − ᾱt−1)

1 − ᾱt
xt +

√
Φtϵ

Both the remaining components of the method and the inference process remain
unchanged.

We also explored the combination of the denoising and inpainting capabilities
of the model by cascading the two versions of DDNM. The transmitted audio’s latent
space representation, which contains both added noise and a gap in the middle (as
described in section 5.2), undergoes denoising using the modified version of DDNM
discussed earlier. The denoised result then undergoes inpainting using the original
version of DDNM described in section 4.1. This cascading approach ensures that
the inpainting phase can leverage the benefits of the denoised audio, allowing for a
more accurate and context-aware inpainting process.
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We conducted empirical experiments to determine the optimal levels of σy that
yield improved results for each level of noise added to the signal. The findings are in
table 6.1. We observed that when using a too low σy, the noise is not completely
removed, resulting in residual artifacts. On the other hand, when using a too
high σy, the output becomes overly smooth, leading to a loss of the original audio
characteristics.

Table 6.1. Levels of σy corresponding to different amounts of added noise.

PSNR σy

30 15.0
20 35.0
10 100.0

6.3 Results

We evaluated the method described above by testing it on four different audio clips
containing speech. Each test was configured as follows:

- PSNR = 30 and no gap

- PSNR = 20 and no gap

- PSNR = 30 and gap from 4.5s to 5.5s

- PSNR = 20 and gap from 4.5s to 5.5s

- PSNR = 30 and gap from 4s to 6s

- PSNR = 20 and gap from 4s to 6s

We will present the results for one of the four audio clips used in our testing, specifi-
cally the one captioned “Male speech with people speaking in the background”. In
figure 6.1, we display the spectrograms of the original clip along with the ones con-
taining added noise (with PSNR values of 30 and 20). Figures 6.2 and 6.3 showcase
the denoising results for the PSNR 30 and 20 cases respectively, as well as the com-
bined denoising and inpainting outcomes. It is evident that the method successfully
reconstructs the original signal from both noisy inputs. To listen to the audio clips
visit the following URL: http://www.andrearodriguez.it/inpainting/.

http://www.andrearodriguez.it/inpainting/
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(a) Original (b) Noisy PSNR 30 (c) Noisy PSNR 20

Figure 6.1. Original audio spectrogram, noisy audio spectrogram with PSNR 30 and 20
for audio clip with caption: “Male speech with people speaking in the background”.

(a) Denoise (b) Denoise + Inpaint 1s (c) Denoise + Inpaint 2s

Figure 6.2. Denoised from PSNR 30 and inpainted results for audio clip with caption:
“Male speech with people speaking in the background”.

(a) Denoise (b) Denoise + Inpaint 1s (c) Denoise + Inpaint 2s

Figure 6.3. Denoised from PSNR 20 and inpainted results for audio clip with caption:
“Male speech with people speaking in the background”.

The validity of the results is further confirmed by evaluating the Signal-to-Noise
Ratio (SNR) both before and after the denoising process. Comparing the SNR
values between the original audio clip and its corresponding noisy version, as well as
between the original audio clip and the respective denoised version, we observe an
increase in SNR for all four tested clips, regardless of whether the PSNR value is 30
or 20. These findings are presented in Table 6.2 and 6.3 respectively.
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Table 6.2. SNR values computed between the original clip and the noisy audio (PSNR 30)
and SNR values computed between the original clip and the denoised version.

PSNR 30 Clip 1 Clip 2 Clip 3 Clip 4

Noisy -3.53 -2.45 -3.54 -3.61
Denoised -1.82 -1.14 -1.32 -2.20

Table 6.3. SNR values computed between the original clip and the noisy audio (PSNR 20)
and SNR values computed between the original clip and the denoised version.

PSNR 20 Clip 1 Clip 2 Clip 3 Clip 4

Noisy -9.80 -9.11 -8.61 -10.10
Denoised -2.47 -3.80 -2.64 -2.58
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Chapter 7

Conclusions and Future works

Finally, drawing upon the findings and insights gathered throughout this thesis,
several key conclusions can be derived. The proposed techniques have demonstrated
significant improvements in comparison to the two baselines. Among the selected
methods, RePaint consistently outperforms the other methodologies, showcasing its
effectiveness in audio inpainting tasks. It is important, however, to carefully consider
the trade-off between performance and inference time. While RePaint delivers
superior results, it also requires a significantly longer inference time compared to
DDNM. Thus, when selecting an appropriate method for audio inpainting, both the
performance metrics and the associated inference time should be carefully weighed.
By bridging the gap between generative diffusion models and audio inpainting, this
research contributed to the growing field of audio restoration.

Furthermore, this research has unveiled two possibilities for future exploration.
Firstly, the development of an automated communication system capable of identi-
fying problematic segments after denoising and subsequently applying inpainting
techniques. By integrating denoising and inpainting capabilities within a com-
munication system, it would be possible to improve the overall audio quality by
automatically addressing identified issues. Secondly, the exploration of inpainting
techniques without relying on a text description, instead utilizing only the known
portion of the audio as conditioning. By leveraging the available information and
employing advanced inpainting methodologies, it may be possible to reconstruct
missing or corrupted audio segments accurately and efficiently. This approach opens
up new possibilities for inpainting in scenarios where a complete text description is
not available or necessary.
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